План-конспект урока в 9 классе по геометрии по теме: «Решение задач по теме: Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов»

Учителя-практиканта МОУ-ООШ №6 г. Аткарска Нестеровой Натальи Сергеевны

Тип урока: урок повторения, обобщения и систематизации знаний.

Цель урока: систематизировать знания учащихся по теме: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов».

Задачи урока:

Дидактические:

- совершенствовать навык решения задач и упражнений по теме: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»;
- совершенствовать умения строить цепочку логических рассуждений и навыки применения знаний в новой ситуации;
- подготовиться к контрольной работе.

Развивающие:

- развивать познавательный интерес учащихся;
- развивать умение выдвигать и обосновывать свои предположения;

Воспитательные:

- формировать потребность в самообразовании;
- воспитывать аккуратность, внимательность, наблюдательность

Методы: объяснительно-иллюстративный, репродуктивный

Оборудование: компьютер, интерактивная доска, презентация Power Point «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов», тест по теме: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»».

Методические особенности: Урок разработан по учебнику: *Геометрия.* 7-9 классы: учеб. для общеобразоват. учреждений / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. — 20-е изд. — М.: Просвещение, 2010. — 384 с.: ил.

Ход урока

- **I.** Организационный момент (1 минута).
- **II.** Собственно урок (41 минута)
- 1. Актуализация знаний фронтальный опрос (5 минут)
- Ребята, скажите, какие темы мы с вами изучаем на протяжении нескольких уроков? // Скалярное произведение векторов и соотношения между сторонами и углами треугольника.

- Давайте с вами вспомним, что называют скалярным произведением двух векторов? // Скалярным произведением двух векторов называется произведение длин данных векторов на косинус угла между ними.
- Чему равно скалярное произведение векторов $\overrightarrow{AB} \cdot \overrightarrow{AC}$, если $|\overrightarrow{AB}| = 2$, $|\overrightarrow{AC}| = 3$, $\angle(\overrightarrow{AB}; \overrightarrow{AC}) = 120^{\circ}$? // $|\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = 2 \cdot 3 \cdot (-0.5) = -3$
- В каком случае скалярное произведение двух ненулевых векторов равно нулю? // Тогда и только тогда, когда эти векторы перпендикулярны.
- В каком случае скалярное произведение двух ненулевых векторов положительно? // Когда угол между заданными векторами является острым.
- В каком случае скалярное произведение двух ненулевых векторов отрицательно? // Когда угол между заданными векторами является тупым.
- Какой вид примет формула скалярного произведения, если заданные векторы сонаправлены? //Если $\vec{a} \uparrow \uparrow \vec{b}$, то $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}|$.
- Какой вид примет формула скалярного произведения, если заданные векторы противоположно направленны? // Если $\vec{a} \uparrow \downarrow \vec{b}$, то $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$.
- Что называют скалярным квадратом? Чему он равен?// Скалярное произведение $\vec{a} \cdot \vec{a}$ называется скалярным квадратом вектора \vec{a} . Скалярный квадрат вектора равен квадрату его длины.
- С помощью какой формулы можно вычислить скалярное произведение векторов $\vec{a}\{x_1;y_1\}, \vec{b}\{x_2;y_2\}$ в прямоугольной системе координат? // $\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$
- Вычислите скалярное произведение векторов \vec{a} и \vec{b} , если $\vec{a}\{3;4\}$, $\vec{b}\{0;-1\}$ // $\vec{a}\cdot\vec{b}=3\cdot 0+4\cdot (-1)=-4$
- Назовите условие перпендикулярности векторов $\vec{a}\{x_1;y_1\}$, $\vec{b}\{x_2;y_2\}$ в декартовой системе координат // $\vec{a}\perp\vec{b}\Leftrightarrow x_1\cdot x_2+y_1\cdot y_2=0$
- Являются ли векторы $\vec{a}\{3;4\}$, $\vec{b}\{0;-1\}$ перпендикулярными? // Нет, так как их скалярное произведение отлично от нуля.
- По какой формуле мы можем найти косинус угла между векторами $\vec{a}\{x_1;y_1\}$, $\vec{b}\{x_2;y_2\}$ через их координаты? // $\cos\angle\left(\vec{a};\vec{b}\right)=\frac{x_1\cdot x_2+y_1\cdot y_2}{\sqrt{x_1^2+y_1^2}\cdot\sqrt{x_2^2+y_2^2}}$
- Какие теоремы мы изучили о соотношениях между сторонами и углами треугольника? Сформулируйте их. // Теорема синусов: стороны треугольника пропорциональны синусам противолежащих углов. Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

2. Повторение, обобщение и систематизация знаний – ответ с комментарием у доски (25 минут)

– Сегодня на уроке мы будем решать задачи по всей главе «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов». Учащиеся выполняют № 1065, № 1071, №1055, №1056 (каждый номер один из учащихся решает у доски, все остальные – в тетради).

№ 1065:

Докажите, что треугольник с вершинами A(3;0), B(1;5), C(2;1) тупоугольный. Найдите косинус тупого угла.

<u>№ 1071:</u>

В треугольнике ABC, площадь которого равна $3\sqrt{3}$, угол A острый, AB = $4\sqrt{3}$, AC = 3. Найдите радиус окружности, описанной около треугольника.

№ 1055:

Найдите угол, лежащий против основания равнобедренного треугольника, если медианы, проведенные к боковым сторонам, взаимно перпендикулярны.

<u>№ 1056:</u>

1) 180°

1) 0

Докажите, что диагонали ромба взаимно перпендикулярны.

№ 1066 (дополнительное):

Найдите длину вектора $\vec{a}=3\vec{\imath}-4\vec{\jmath}$, где $\vec{\imath}$ и $\vec{\jmath}$ – координатные векторы.

4. Контроль над усвоением материала – тест (10 минут).

2) 0°

2) -4

После решения задач учащиеся выполняют тест с последующей самопроверкой (8 минут + 2 минуты на проверку). Правильные ответы и критерии выставления оценки за тест изображены на слайде.

Тест по теме: «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»

1. Вычислит	ге скалярное произвед	ение векторов т	и n , если $ m $	= 4, n = 3,
а угол межд	у ними равен 60°.			
1) 12	2) 6√3	3) $6\sqrt{2}$	4) 6	

2. Скалярное произведение ненулевых векторов \vec{a} и \vec{b} равно 0. Определите угол между данными векторами.

3. Вычислите	скалярное	произведение	векторов	\vec{a}	И	$ec{b},$	если
$\vec{a}\{-9;4\}, \vec{b}\{4;-$	-8}.						

3) 90°

3) -68

4) 60°

4) 66

4. В треугольн	ике АВС∠А = 3	$0^{\circ}, BC = 3.$	Найдите	радиус	окружности,	
описанной около	о треугольника Al	BC.				
1) 6	2) 3		3) 3√3		4) 4√3	
5. Вычислить косинус угла между векторами \vec{p} и \vec{q} , если \vec{p} {3; -4 }, \vec{q} {15; 8}.						
1) $\frac{17}{122}$	2) $\frac{13}{95}$	3) $\frac{3}{4}$		4) $-\frac{13}{2}$	3	

6. В треугольнике ABC AB = $10 \, \text{см}$, AC = $5 \, \text{см}$, $\angle A = 120^{\circ}$. Найдите неизвестную сторону.

1) $5\sqrt{7}$

2) $5\sqrt{3}$

3) 5

4) $3\sqrt{7}$

Критерии оценивания:

Оценка «3» – 4 правильных ответа

Оценка «4» – 5 правильных ответов

Оценка «5» – 6 правильных ответов

III. Итог урока (4 минуты).

Рефлексия:

Чему был посвящен этот урок? Возникли ли какие-то сложности в решении задач?

- <u>Оценивание деятельности учеников</u> поурочный балл.
- Домашнее задание:

Решить следующие задачи (на слайде):

<u>**№1.**</u> Решите $\triangle MNK$, если $\angle N = 30^{\circ}$, $\angle K = 105^{\circ}$, $NK = 3\sqrt{2}$.

<u>№2.</u> Найти косинусы углов треугольника *ABC*, если A(1;7), B(-2;4), C(2;0)

<u>№3.</u> Две стороны треугольника равны 4 см и 7 см, а косинус угла между ними равен $-\frac{2}{7}$. Определите синусы всех угол данного треугольника и его третью сторону.

<u>№4.</u>ABCD – ромб, AB = 6, $\angle A = 60^{\circ}$. Найдите: а) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, б) $\overrightarrow{AD} \cdot \overrightarrow{DB}$.

№5. Даны два перпендикулярных отрезка EK и PM, E(-3;1), K(1;4), M(2;1), P(-4;a). Найдите: а) значение a; б) угол между прямыми EK и PM.