План-конспект урока «Значения синуса, косинуса и тангенса для углов 30° , 45° и 60° ». 8 класс.

Тип урока: урок изучения нового материала.

Цель урока: научить учащихся вычислять значения синуса, косинуса и тангенса для углов 30° , 45° и 60° , использовать в решении задач.

Задачи урока:

Образовательные:

- повторить понятия синуса, косинуса, тангенса острого угла прямоугольного треугольника;
- вычислить значения синуса, косинуса и тангенса для углов 30°, 45° и 60° и составить таблицу значений.
 - решать задачи на прямоугольный треугольник, используя понятия синуса, косинуса и тангенса острого угла;

Развивающие:

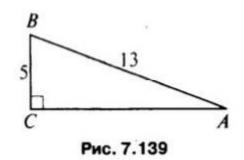
– развивать математическую речь у учащихся;

Воспитательные:

– воспитывать у учащихся внимательность и наблюдательность.

Оборудование: меловая доска, индивидуальные карточки.

Методические особенности: урок разработан по учебнику «Геометрия, 7-9», Л.С. Атанасян учебник для общеобразовательных учреждений. М. «Просвещение» 2013 г.

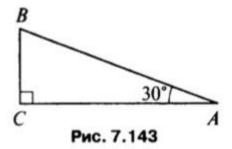

Ход урока

І. Организационный момент (2 минуты).

Приветствие. Проверка готовности к уроку.

- II. Собственно урок (минута).
- 1) Актуализация знаний фронтальный опрос + работа по индивидуальным карточкам 10 минут.
- Чему равен синус острого угла в прямоугольном треугольнике? // Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе.

- Чему равен косинус острого угла в прямоугольном треугольнике? //
 Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе.
- Чему равен тангенс острого угла в прямоугольном треугольнике? //
 Тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему.
- Если острые углы двух прямоугольных треугольников равны, то...
 // Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы и косинусы этих углов равны, тангенсы этих углов равны.
- Какое равенство называют основным тригонометрическим тождеством? // $sin^2 \angle A + cos^2 \angle A = 1$

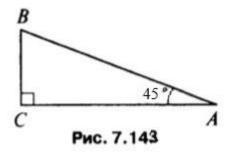


— Найдите $\sin \angle A$, $\cos \angle A$, $tg \angle A$, $\sin \angle B$, $\cos \angle B$, $tg \angle B$ (Рис. 7.139) // $\sin \angle A = \frac{5}{13}$, $\cos \angle A = \frac{12}{13}$, $tg \angle A = \frac{5}{12}$, $\sin \angle B = \frac{12}{13}$, $\cos \angle B = \frac{5}{13}$, $tg \angle B = \frac{12}{5}$.

Во время фронтального опроса некоторые ученики работают по индивидуальным карточкам, после сдают на проверку:

- 1. Найдите $\cos \alpha$ и $tg\alpha$, если $\sin \alpha = 0,3$.
- 2. В равнобедренном треугольнике *ABC* (*AB* = *BC*) основание равно 12 см, а высота, проведенная к ней, равна 8 см. Найдите синусы, косинусы и тангенсы углов при основании.
 - 2) Изучение нового материала решение задач 15 минут.
- Сейчас вам будет нужно объединиться в группы для решения задач с последующим обсуждением.

№1 В \triangle ABC (\angle C=90°) \angle A=30° (рис. 7.143). Вычислите \sin \angle A, \cos \angle A, tg \angle A, \sin \angle B, \cos \angle B, tg \angle B.


Решение:

1) Пусть BC = x, тогда AB = 2x (катет, лежащий против угла 30° равен половине гипотенузы);

2)
$$\sin \angle A = \frac{BC}{AB} = \frac{x}{2x} = \frac{1}{2}$$
, $\cos \angle A = \sqrt{1 - \sin^2 \angle A} = \frac{\sqrt{3}}{2}$, $\cot A = \frac{\sin 30^\circ}{\cos 30^\circ} = \frac{1}{2}$: $\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$.

3) Sin
$$\angle B = \cos \angle A = \frac{\sqrt{3}}{2}$$
, $\cos \angle B = \sin \angle A = \frac{1}{2} \rightarrow \text{tg } \angle B = \sqrt{3}$.

№2 В ∆АВС (∠С=90°) ∠А=45° (рис. 7.143). Вычислите sin ∠A, cos ∠A, tg ∠A.

Решение:

1) Так как ∠A=45°, то ∠B=45° → ∠A=∠B → Δ ABC – равнобедренный. Пусть BC=x → AC=x → AB= $\sqrt{BC^2 + AC^2} = \sqrt{x^2 + x^2} = \sqrt{2}x$;

2)
$$\sin \angle A = \frac{BC}{AB} = \frac{x}{\sqrt{2}x} = \frac{\sqrt{2}}{2}$$
, $\cos \angle A = \sqrt{1 - \sin^2 \angle A} = \frac{\sqrt{2}}{2}$, $\sec \angle A = \frac{\sin 30^\circ}{\cos 30^\circ} = \frac{\sqrt{2}}{2} : \frac{\sqrt{2}}{2} = 1$.

– Получив значения, теперь заполните таблицу:

	30°	45°	60°
sin α	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
tgα	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

– У вас получилась таблица с значениями синуса, косинуса и тангенса для

 30° , 45° и 60° . Ее нужно выучить и запомнить!

3) Закрепление изученного материала – решение задач у доски с комментарием – 15 минут.

Задача №1 В треугольнике ABC угол C прямой, AB = 10, ∠B = 60°. Найдите BC.

Решение:

1)
$$\cos \angle B = \frac{BC}{AB} = \frac{1}{2} \to \frac{BC}{10} = \frac{1}{2} \to BC = 5.$$

№ 594 В прямоугольном треугольнике один из катетов равен b, а противолежащий угол равен β . Выразите другой катет, противолежащий ему угол и гипотенузу через b и β , найдите их значения если $\beta = 60^{\circ}$ и b = 12.

а) Решение:

1)
$$\sin \angle \beta = \frac{AC}{AB} \rightarrow AB = AC : \sin \angle \beta = b : \sin \angle \beta$$

2)
$$\angle A + \angle B = 90^{\circ} \rightarrow \angle A = 90^{\circ} - \beta$$

3)
$$\operatorname{tg} \angle \beta = \frac{AC}{BC} \rightarrow BC = AC : \operatorname{tg} \angle \beta = b : \operatorname{tg} \angle \beta$$

4) Если
$$\beta = 60^{\circ}$$
 и $b = 12$, то $\angle A = 30^{\circ}$, $AB = \frac{24}{\sqrt{3}}$, $BC = \frac{12}{\sqrt{3}}$.

№ 595 В прямоугольном треугольнике гипотенуза равна c, а один из острых углов равен α . Выразите второй острый угол и катеты через c и α , и найдите их значения, если c = 24 см, а $\alpha = 30^{\circ}$.

Решение:

- 1) Если $\angle A=\alpha$, то $\angle B=90^{\circ}-\alpha$
- 2) $\sin \angle A = BC : AB \rightarrow BC = AB * \sin \alpha = c * \sin \alpha$
- 3) $\cos \angle A = AC : AB \rightarrow AC = AB * \cos \alpha = c * \cos \alpha$
- 4) Если c = 24, $\alpha = 30^{\circ}$, то $\angle B = 90^{\circ} 30^{\circ} = 60^{\circ}$, $BC = 24 * \frac{1}{2} = 12$, $AC = 24 * \frac{\sqrt{3}}{2} = 12\sqrt{3}$.

III. Итог урока (3 минуты).

Целевой итог – рефлексия

Что мы сегодня узнали нового?

<u>Оценивание деятельности учеников</u> – выставление оценок за работу на уроке.

Домашнее задание:

№ 595 и доп. задачи (1-3)

595 В прямоугольном треугольнике один из катетов равен b, а прилежащий к нему угол равен α . а) Выразите второй катет, прилежащий к нему острый угол и гипотенузу через b и α . б) Найдите их значения, если b=12 см, $\alpha=30^{\circ}$.

Дополнительные задачи:

- В прямоугольной трапеции основания равны 6 см и 11 см, меньшая боковая сторона равна 4 см. Найдите синус, косинус и тангенс острого угла трапеции.
- 2) Отрезки AB и CD пересекаются в точке O так, что OD = 10 см. Из точки D на отрезок OB опущен перпендикуляр DE ($E \cap OB$), OE = 6 см. Найдите угол DOE.
- 3) Сторона AD параллелограмма ABCD равна 12 см, диагональ BD перпендикулярна стороне AB и равна 7 см. Найдите углы параллелограмма.