Рабочая программа по учебному предмету «Информатика» для 8 класса (ФГОС)

Рабочая программа по информатике для 8 класса составлена в соответствии с требованиями к результатам освоения основной образовательной программы основного общего образования (личностным, метапредметным, предметным) школы и примерной программы по информатике Л.Л. Босовой для 8 класса.

На освоение программы отводится 34 часа.

Босова Л.Л., Босова А.Ю. Информатика: Учебник для 8 класса. – М.: БИНОМ. Лаборатория знаний

Планируемые результаты изучения информатики

Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования уточняют и конкретизируют общее понимание личностных, метапредметных и предметных результатов как с позиции организации их достижения в образовательном процессе, так и с позиции оценки достижения этих результатов.

Планируемые результаты сформулированы к каждому разделу учебной программы.

Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится ...». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития).

Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться ...». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

Содержание учебного предмета

Математические основы информатики (9 ч)

Общие сведения о системах счисления. Понятие о непозиционных и позиционных системах счисления. Знакомство с двоичной, восьмеричной и шестнадцатеричной системами счисления, запись в них целых десятичных чисел от 0 до 1024. Перевод небольших целых чисел из двоичной системы счисления в десятичную. Двоичная арифметика.

Компьютерное представление целых чисел. Представление вещественных чисел.

Высказывания. Логические операции. Логические выражения. Построение таблиц истинности для логических выражений. Свойства логических операций. Решение логических задач. Логические элементы.

Аналитическая деятельность:

- анализировать любую позиционную систему как знаковую систему;
- определять диапазон целых чисел в n-разрядном представлении;
- анализировать логическую структуру высказываний;
- анализировать простейшие электронные схемы.

Практическая деятельность:

- переводить небольшие (от 0 до 1024) целые числа из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную и обратно;
- выполнять операции сложения и умножения над небольшими двоичными числами;
- строить таблицы истинности для логических выражений;
- вычислять истинностное значение логического выражения.

Основы алгоритмизации (7 ч)

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Робот, Чертёжник, Черепаха, Кузнечик, Водолей, Удвоитель и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд.

Понятие алгоритма как формального описания последовательности действий исполнителя при заданных начальных данных. Свойства алгоритмов. Способы записи алгоритмов.

Алгоритмический язык – формальный язык для записи алгоритмов. Программа – запись алгоритма на алгоритмическом языке. Непосредственное и программное управление исполнителем.

Линейные программы. Алгоритмические конструкции, связанные с проверкой условий: ветвление и повторение. Разработка алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма. Понятие простой величины. Типы величин: целые, вещественные, символьные, строковые, логические. Переменные и константы. Знакомство с табличными величинами (массивами). Алгоритм работы с величинами – план целенаправленных действий по проведению вычислений при заданных начальных данных с использованием промежуточных результатов.

Управление, управляющая и управляемая системы, прямая и обратная связь. Управление в живой природе, обществе и технике.

Аналитическая деятельность:

- приводить примеры формальных и неформальных исполнителей;
- придумывать задачи по управлению учебными исполнителями;
- выделять примеры ситуаций, которые могут быть описаны с помощью линейных алгоритмов, алгоритмов с ветвлениями и циклами;
- определять по блок-схеме, для решения какой задачи предназначен данный алгоритм;
- анализировать изменение значений величин при пошаговом выполнении алгоритма;
- определять по выбранному методу решения задачи, какие алгоритмические конструкции могут войти в алгоритм;
- осуществлять разбиение исходной задачи на подзадачи;
- сравнивать различные алгоритмы решения одной задачи.

Практическая деятельность:

- исполнять готовые алгоритмы для конкретных исходных данных;
- преобразовывать запись алгоритма с одной формы в другую;
- строить цепочки команд, дающих нужный результат при конкретных исходных данных для исполнителя арифметических действий;
- строить цепочки команд, дающих нужный результат при конкретных исходных данных для исполнителя, преобразующего строки символов;
- составлять линейные алгоритмы по управлению учебным исполнителем;
- составлять алгоритмы с ветвлениями по управлению учебным исполнителем;
- составлять циклические алгоритмы по управлению учебным исполнителем;
- строить арифметические, строковые, логические выражения и вычислять их значения;
- строить алгоритм (различные алгоритмы) решения задачи с использованием основных алгоритмических конструкций и подпрограмм.

Начала программирования на языке Паскаль (19 ч)

Язык программирования. Основные правила одного из процедурных языков программирования (Паскаль, школьный алгоритмический язык и др.): правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл) и вызова вспомогательных алгоритмов; правила записи программы.

Этапы решения задачи на компьютере: моделирование — разработка алгоритма — кодирование — отладка — тестирование.

Решение задач по разработке и выполнению программ в выбранной среде программирования.

Аналитическая деятельность:

- анализировать готовые программы;
- определять по программе, для решения какой задачи она предназначена;
- выделять этапы решения задачи на компьютере.

Практическая деятельность:

• программировать линейные алгоритмы, предполагающие вычисление арифметических, строковых и логических выражений;

- разрабатывать программы, содержащие оператор/операторы ветвления (решение линейного неравенства, решение квадратного уравнения и пр.), в том числе с использованием логических операций;
- разрабатывать программы, содержащие оператор (операторы) цикла.

Тематическое планирование

Примерные темы, раскрывающие основное содержание программы	Основное содержание по те- мам	Характеристика деятельности ученика	
Тема 1. Математические основы информатики	Понятие о непозиционных и по- зиционных системах счисления. Знакомство с двоичной, восьме- ричной и шестнадцатеричной системами счисления, запись в них целых десятичных чисел от 0 до 1024. Перевод небольших целых чисел из двоичной, вось- меричной и шестнадцатеричной системы счисления в десятич- ную. Двоичная арифметика. Логика высказываний (элемен- ты алгебры логики). Логические значения, операции (логическое отрицание, логическое умноже- ние, логическое сложение), вы- ражения, таблицы истинности.	 Аналитическая деятельность: выявлять различие в унарных, позиционных и непозиционных системах счисления; выявлять общее и отличия в разных позиционных системах счисления; анализировать логическую структуру высказываний. Практическая деятельность: переводить небольшие (от 0 до 1024) целые числа из десятичной системы счисления в двоичную (восьмеричную, шестнадцатеричную) и обратно; выполнять операции сложения и умножения над небольшими двоичными числами; записывать вещественные числа в естественной и нормальной форме; строить таблицы истинности для логических выражений; вычислять истинностное значение 	
Тема 2. Основы алгоритмизации	Учебные исполнители Робот, Удвоитель и др. как примеры формальных исполнителей. По- нятие алгоритма как формаль- ного описания последователь- ности действий исполнителя при заданных начальных дан- ных. Свойства алгоритмов. Спо- собы записи алгоритмов. Алгоритмический язык — фор- мальный язык для записи алго- ритмов. Программа — запись ал- горитма на алгоритмическом языке. Непосредственное и про- граммное управление исполни- телем. Линейные программы. Алго- ритмические конструкции, свя- занные с проверкой условий:	логического выражения. Аналитическая деятельность: определять по блок-схеме, для решения какой задачи предназначен данный алгоритм; анализировать изменение значений величин при пошаговом выполнении алгоритма; определять по выбранному методу решения задачи, какие алгоритмические конструкции могут войти в алгоритм; сравнивать различные алгоритмы решения одной задачи. Практическая деятельность: исполнять готовые алгоритмы для конкретных исходных данных; преобразовывать запись алгоритма с одной формы в другую; строить цепочки команд, дающих	

	ветвление и повторение. Понятие простой величины. Типы величин: целые, вещественные, символьные, строковые, логические. Переменные и константы. Алгоритм работы с величинами — план целенаправленных действий по проведению вычислений при заданных начальных данных с использованием промежуточных результатов.	нужный результат при конкретных исходных данных для исполнителя арифметических действий; • строить цепочки команд, дающих нужный результат при конкретных исходных данных для исполнителя, преобразующего строки символов; • строить арифметические, строковые, логические выражения и вычислять их значения		
Тема 3. Начала программирования	Язык программирования. Основные правила языка программирования Паскаль: структура программы; правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл). Решение задач по разработке и выполнению программ в среде программирования Паскаль.	primbi, ilpedilonal alomne ppi inchelline		

Авторский учебно-методический комплект по курсу информатики 8 класса

щие оператор (операторы) цикла

- 1. Босова Л.Л., Босова А. Ю. Информатика: учебник для 8 класса. М.: БИНОМ. Лаборатория знаний, 2013.
- 2. Босова Л.Л. Информатика: рабочая тетрадь для 8 класса. М.: БИНОМ. Лаборатория знаний, 2012.
- 3. Босова Л.Л., Босова А.Ю. Информатика. 7–9 классы : методическое пособие. М.: БИНОМ. Лаборатория знаний, 2013.
- 4. Босова Л.Л., Босова А.Ю. Электронное приложение к учебнику «Информатика. 8 класс»

Босова Л.Л., Босова А.Ю. Уроки информатики в 5–9 классах: методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2012.

- 1. Босова Л.Л., Босова А.Ю., Коломенская Ю.Г. Занимательные задачи по информатике. М.: БИНОМ. Лаборатория знаний, 2006.
- 2. Босова Л.Л. Набор цифровых образовательных ресурсов «Информатика 5-9». М.: БИНОМ. Лаборатория знаний, 2011.